Title of article
General linear estimators under the prediction error sum of squares criterion in a linear regression model
Author/Authors
Xu-Qing Liu&Bo Li، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
9
From page
1353
To page
1361
Abstract
In this paper, the notion of the general linear estimator and its modified version are introduced using the
singular value decomposition theorem in the linear regression model y = Xβ + e to improve some classical
linear estimators. The optimal selections of the biasing parameters involved are theoretically given under
the prediction error sum of squares criterion. A numerical example and a simulation study are finally
conducted to illustrate the superiority of the proposed estimators.
Keywords
modified generallinear estimator , general linear estimator , Linear regression , prediction error sum of squares
Journal title
JOURNAL OF APPLIED STATISTICS
Serial Year
2012
Journal title
JOURNAL OF APPLIED STATISTICS
Record number
712801
Link To Document