• Title of article

    DISTANCE ENTRE PUISSANCES DUNE UNIT APPROCHEE BONREE

  • Author/Authors

    BERKANI، M. نويسنده , , ESTERLE، J. نويسنده , , MOKHTARI، A. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -460
  • From page
    461
  • To page
    0
  • Abstract
    Let $A$ be a Banach algebra and let $p$ and $q$ be two positive integers. We show that if $A$ has a left bounded sequential approximate identity $(e_n)_{n\ge1}$ such that ${\rm lim}\,{\rm inf}_{n\to+\infty}\|e^p_ne^{p+q}_n\| < ({p \over {p+q}})^{p\over q}{q\over{p+q}}$ then $A$ has a left-bounded sequential identity $(f_n)_{n\ge1}$ such that $f^2_n = f_n$ for $n\ge1$. A simple example shows that the constant $({p\over {p+q}})^{p\over q}{q\over{p+q}}$ is best possible. This result is based on some algebraic or integral formulae which associate an idempotent to elements of a Banach algebra satisfying some inequalities involving polynomials or entire functions.
  • Journal title
    JOURNAL OF LONDON MATHEMATICAL SOCIETY
  • Serial Year
    2003
  • Journal title
    JOURNAL OF LONDON MATHEMATICAL SOCIETY
  • Record number

    71357