Title of article
DISTANCE ENTRE PUISSANCES DUNE UNIT APPROCHEE BONREE
Author/Authors
BERKANI، M. نويسنده , , ESTERLE، J. نويسنده , , MOKHTARI، A. نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-460
From page
461
To page
0
Abstract
Let $A$ be a Banach algebra and let $p$ and $q$ be two positive integers. We show that if $A$ has a left bounded sequential approximate identity $(e_n)_{n\ge1}$ such that ${\rm lim}\,{\rm inf}_{n\to+\infty}\|e^p_ne^{p+q}_n\| < ({p \over {p+q}})^{p\over q}{q\over{p+q}}$ then $A$ has a left-bounded sequential identity $(f_n)_{n\ge1}$ such that $f^2_n = f_n$ for $n\ge1$. A simple example shows that the constant $({p\over {p+q}})^{p\over q}{q\over{p+q}}$ is best possible. This result is based on some algebraic or integral formulae which associate an idempotent to elements of a Banach algebra satisfying some inequalities involving polynomials or entire functions.
Journal title
JOURNAL OF LONDON MATHEMATICAL SOCIETY
Serial Year
2003
Journal title
JOURNAL OF LONDON MATHEMATICAL SOCIETY
Record number
71357
Link To Document