Title of article :
A Proof of a Conjecture of C.L. Siegel Original Research Article
Author/Authors :
Ding J. T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
11
From page :
1
To page :
11
Abstract :
Let Mn be the Minkowski fundamental domain for the space of n × n real, symmetric, and positive definite matrices under the action of the unimodular group SLn(Z). C. L. Siegel conjectured that d(A, B) − f(A, B) ≤ C(n), for A, B set membership, variant Mn, where d and f are the geodesic and the reduced geodesic distances, respectively, and C(n) is a constant depending only on n. This conjecture appears in his book ("Zur Reduktionstheorie Quadratischer Formen," The Mathematical Society of Japan, 1959). By reducing the problem to the diagonal matrices in Mn, we obtain a proof.
Journal title :
Journal of Number Theory
Serial Year :
1994
Journal title :
Journal of Number Theory
Record number :
714274
Link To Document :
بازگشت