Title of article :
An Inverse Theorem for Sums of Sets of Lattice Points Original Research Article
Author/Authors :
Nathanson M. B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
31
From page :
29
To page :
59
Abstract :
Let A be a subset of an n-dimensional Euclidean space V, and let A denote the cardinality of A. The sumset 2A is defined as the set of all vector of the form a1 + a2, where a1, a2 set membership, variant A. Theorem: Let n ≥ 2 and 1 < c < 2n. There exist constants k*0 = k*0(n, c) and ε0 = ε0(n, c) with the property that if A is a finite subset of V such that A ≥ k*0 and 2A ≤ c A, then there exists a hyperplane H in V such that A ∩ H > ε0 A.
Journal title :
Journal of Number Theory
Serial Year :
1994
Journal title :
Journal of Number Theory
Record number :
714276
Link To Document :
بازگشت