Title of article :
On the Generation of the Tame Kernel by Dennis-Stein Symbols Original Research Article
Author/Authors :
Geijsberts M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
13
From page :
167
To page :
179
Abstract :
Let p be an odd prime number and let F be a number field not containing a primitive pth root of unity ζp. In this paper we show that if p[formula] [F : image] · disc(F) then the p-primary part of K2(imageF[1/p]) is generated by Dennis-Stein symbols. For the real quadratic fields F = image([formula]) and F = image([formula]) we compute generators for the tame kernel K2(imageF) and give presentations for SLn(imageF) (n ≥ 3) for both fields.
Journal title :
Journal of Number Theory
Serial Year :
1995
Journal title :
Journal of Number Theory
Record number :
714380
Link To Document :
بازگشت