Title of article :
On a Multiplicative–Additive Galois Invariant and Wildly Ramified Extensions Original Research Article
Author/Authors :
Michael Rogers، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
11
From page :
194
To page :
204
Abstract :
We investigate the Galois module structure of wildly ramified extensions. We are interested in particular in the second invariant of an extension of number fields defined by Chinburg via the canonical class of the extension and lying in the locally free class group. We show that in QueyrutʹsS-class group, whereSis a (finite) set of primes, the image of Chinburgʹs invariant equals the stable isomorphism class of the ring of integers and thus extend Chinburgʹs result for tame extensions.
Journal title :
Journal of Number Theory
Serial Year :
1996
Journal title :
Journal of Number Theory
Record number :
714516
Link To Document :
بازگشت