Title of article :
On Mordellʹs Inverse Problem in Dimension Three Original Research Article
Author/Authors :
G. Ramharter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
28
From page :
388
To page :
415
Abstract :
Given a latticeL=AZ3with determinantd(L)=det(A)>0, letκ(L)= sup{vol(P)/(8d(L)} where the supremum is taken over allo-symmetric parallelepipedsPwith faces parallel to the coordinate axes such thatP∩L={o}. We prove the following conjecture by Gruber: The absolute minimum of the functionκ(L) has value 8/7 cos2(π/7) cos(2π/7)=0.578416…=κ(L*) and is uniquely attained at the critical latticeL* of the star body x1x2x3less-than-or-equals, slant1. Moreover, this minimum is isolated: There exists a positiveηsuch thatκ(L)>κ(L*)+ηholds for any lattice which is not equivalent toL*. We also state a conjecture concerning higher minima ofκ(L).
Journal title :
Journal of Number Theory
Serial Year :
1996
Journal title :
Journal of Number Theory
Record number :
714586
Link To Document :
بازگشت