• Title of article

    A Converse Theorem for Jacobi Forms Original Research Article

  • Author/Authors

    Yves Martin، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1996
  • Pages
    13
  • From page
    181
  • To page
    193
  • Abstract
    Letf(qτ, qz)=∑n, r c(n, r) qnτqrzbe a power series whose coefficients satisfy a particular periodicity condition depending on the integerrmodulo 2m. We first associate tof(qτ, qz) a 2m-vector-valued functionΛ(f, s) via a generalized Mellin transform. Then we show that the functionΛ(f, s) is entire, bounded on vertical strips and satisfies certain matrix functional equation if, and only if,f(qτ, qz) is the Fourier expansion of a Jacobi cusp form of indexminvariant under the group SL(2, image)times sign, left closedimage2. This is the direct analogue of Heckeʹs converse theorem for elliptic cusp forms in the context of Jacobi cusp forms on SL(2, image)times sign, left closedimage2.
  • Journal title
    Journal of Number Theory
  • Serial Year
    1996
  • Journal title
    Journal of Number Theory
  • Record number

    714643