Title of article :
Rankin–Cohen Operators for Jacobi and Siegel Forms Original Research Article
Author/Authors :
Youngju Choie، نويسنده , , Wolfgang Eholzer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
18
From page :
160
To page :
177
Abstract :
For any non-negative integer v we construct explicitly left floorv/2right floor+1 independent covariant bilinear differential operators fromJk, m×Jk′, m′toJk+k′+v, m+m′. As an application we construct a covariant bilinear differential operator mappingS(2)k×S(2)k′toS(2)k+k′+v. HereJk, mdenotes the space of Jacobi forms of weightkand indexmandS(2)kthe space of Siegel modular forms of degree 2 and weightk. The covariant bilinear differential operators constructed are analogous to operators already studied in the elliptic case by R. Rankin and H. Cohen and we call them Rankin–Cohen operators.
Journal title :
Journal of Number Theory
Serial Year :
1998
Journal title :
Journal of Number Theory
Record number :
714810
Link To Document :
بازگشت