Title of article :
On a Linear Diophantine Problem of Frobenius: Extending the Basis,
Author/Authors :
Stefan Matthias Ritter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
12
From page :
201
To page :
212
Abstract :
LetXk={a1, a2, …, ak},k>1, be a subset of such that gcd(Xk)=1. We shall say that a natural numbernisdependent(onXk) if there are nonnegative integersxisuch thatnhas a representationn=∑ki=1 xiai, elseindependent. The Frobenius numberg(Xk) ofXkis the greatest integer withnosuch representation. Selmer has raised the problem of extendingXkwithout changing the value ofg. He showed that under certain conditions it is possible to add an elementc=a+kdto the arithmetic sequencea,a+d,a+2d, …, a+(k−1) d, gcd(a, d)=1, without alteringg. In this paper, we give the setCof all independent numberscsatisfyingg(A, c)=g(A), whereAcontains the elements of the arithmetic sequence. Moreover, ifa>kthen we give as an application, a setBof maximal cardinality such thatg(A, B)=g(A) and each element ofA Bis independent of the other ones.
Journal title :
Journal of Number Theory
Serial Year :
1998
Journal title :
Journal of Number Theory
Record number :
714826
Link To Document :
بازگشت