• Title of article

    Swan Modules and Hilbert–Speiser Number Fields, Original Research Article

  • Author/Authors

    Cornelius Greither، نويسنده , , Daniel R. Replogle، نويسنده , , Karl Rubin، نويسنده , , Anupam Srivastav، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    10
  • From page
    164
  • To page
    173
  • Abstract
    A number field K is called a Hilbert–Speiser field if for each tamely ramified finite abelian extension N/K the ring of algebraic integers of N, imageN, has a normal integral basis over imageK, the ring of algebraic integers of K. The classical Hilbert–Speiser theorem proves that the field of rational numbers Q is such a field. It is well known that the class number of a Hilbert–Speiser field must equal 1. We consider tame elementary abelian extensions of a number field K and Swan modules to obtain additional necessary conditions for K to be a Hilbert–Speiser field. We show that among all number fields, the field Q is the only Hilbert–Speiser field.
  • Journal title
    Journal of Number Theory
  • Serial Year
    1999
  • Journal title
    Journal of Number Theory
  • Record number

    715015