Title of article :
On the Fontaine–Mazur Conjecture for Number Fields and an Analogue for Function Fields Original Research Article
Author/Authors :
Joshua Brandon Holden، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
32
From page :
16
To page :
47
Abstract :
The Fontaine–Mazur Conjecture for number fields predicts that infinite ℓ-adic analytic groups cannot occur as the Galois groups of unramified ℓ-extensions of number fields. We investigate the analogous question for function fields of one variable over finite fields, and then prove some special cases of both the number field and function field questions using ideas from class field theory, ℓ-adic analytic groups, Lie algebras, arithmetic algebraic geometry, and Iwasawa theory.
Journal title :
Journal of Number Theory
Serial Year :
2000
Journal title :
Journal of Number Theory
Record number :
715047
Link To Document :
بازگشت