Title of article :
Minimal Extensions of Algebraic Groups and Linear Independence, Original Research Article
Author/Authors :
W. Dale Brownawell، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
16
From page :
239
To page :
254
Abstract :
We introduce the notion of a minimal extension of t-groups. Linear independence of the coordinates of the logarithm of an algebraic point in a minimal extension of t-groups follows naturally from linear independence of the coordinates of the image in the tangent space of the base t-group. We illustrate this principle through a leisurely parade of examples. In particular, we establish a general theorem about divided derivatives for t-modules. Minimal extensions turn out to correspond to Frattini covers for t-groups.
Journal title :
Journal of Number Theory
Serial Year :
2001
Journal title :
Journal of Number Theory
Record number :
715239
Link To Document :
بازگشت