Title of article :
New Modular Relations for the Göllnitz–Gordon Functions Original Research Article
Author/Authors :
Shu-Ling Chen، نويسنده , , Sen-Shan Huang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
18
From page :
58
To page :
75
Abstract :
We attempt to obtain new modular relations for the Göllnitz–Gordon functions by techniques which have been used by L. J. Rogers, G. N. Watson, and D. Bressoud to prove some of Ramanujanʹs 40 identities. Also, we give new proofs for some modular relations for the Göllnitz–Gordon functions which have been previously established by using results from L. Rogers and D. Bressoud. Finally, we give applications of those new modular relations to the theory of partitions.
Keywords :
Rogers–Ramanujan functions , G?llnitz–Gordon functions , Ramanujan’sgeneral theta function , colored partitions. , Jacobi’s triple product identity
Journal title :
Journal of Number Theory
Serial Year :
2002
Journal title :
Journal of Number Theory
Record number :
715294
Link To Document :
بازگشت