Title of article :
Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields Original Research Article
Author/Authors :
Shaofang Hong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
29
From page :
368
To page :
396
Abstract :
Let Fq be the finite field of q elements with characteristic p and Fqm its extension of degree m. Fix a nontrivial additive character Ψ of Fp. If f(x1,…,xn)set membership, variantFq[x1,…,xn] is a polynomial, then one forms the exponential sum Sm( f)=∑(x1,…,xn)set membership, variant(Fqm)nΨ(TrFqm/Fp( f(x1,…,xn))). The corresponding L-function is defined by image. In this paper, we apply Dworkʹs method to determine the Newton polygon for the L-function L( f(x),t) associated with one variable polynomial f(x) when deg f(x)=6. As applications, we also give affirmative answers to Wanʹs conjecture and Hongʹs conjecture for the case deg f(x)=6.
Keywords :
Newton polygons , L-functions , Exponential sums
Journal title :
Journal of Number Theory
Serial Year :
2002
Journal title :
Journal of Number Theory
Record number :
715393
Link To Document :
بازگشت