Title of article
A mean value theorem for cubic fields Original Research Article
Author/Authors
R. C. Vaughan، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
15
From page
169
To page
183
Abstract
Let r(n) denote the number of integral ideals of norm n in a cubic extension K of the rationals, and define S(x)= ∑nless-than-or-equals, slantxr(n) and Δ(x)=S(x)−αx where α is the residue of the Dedekind zeta function ζ(s,K) at 1. It is shown that the abscissa of convergence ofimageis image as expected.
Keywords
Gauss lattice point problem , Integral ideals , Dedekind zeta function , Cubic fields , Mean value theorem
Journal title
Journal of Number Theory
Serial Year
2003
Journal title
Journal of Number Theory
Record number
715458
Link To Document