Title of article :
An analogue of a theorem of Szüsz for formal Laurent series over finite fields
Author/Authors :
Michael Fuchs، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
26
From page :
105
To page :
130
Abstract :
About 40 years ago, Szüsz proved an extension of the well-known Gauss–Kuzmin theorem. This result played a crucial role in several subsequent papers (for instance, papers due to Szüsz, Philipp, and the author). In this note, we provide an analogue in the field of formal Laurent series and outline applications to the metric theory of continued fractions and to the metric theory of diophantine approximation.
Keywords :
finite fields , Metric continued fractions theory , Formal Laurent series , Metric diophantineapproximation , Dependent random variables , Invariance principles
Journal title :
Journal of Number Theory
Serial Year :
2003
Journal title :
Journal of Number Theory
Record number :
715477
Link To Document :
بازگشت