Title of article :
On the prime power factorization of n!
Author/Authors :
Florian Luca، نويسنده , , Pantelimon St nic ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
8
From page :
298
To page :
305
Abstract :
In this paper, we prove two results. The first theorem uses a paper of Kim (J. Number Theory 74 (1999) 307) to show that for fixed primes p1,…,pk, and for fixed integers m1,…,mk, with pi mi, the numbers (ep1(n),…,epk(n)) are uniformly distributed modulo (m1,…,mk), where ep(n) is the order of the prime p in the factorization of n!. That implies one of Sanderʹs conjectures from Sander (J. Number Theory 90 (2001) 316) for any set of odd primes. Berend (J. Number Theory 64 (1997) 13) asks to find the fastest growing function f(x) so that for large x and any given finite sequence i {0,1}, i f(x), there exists n
Journal title :
Journal of Number Theory
Serial Year :
2003
Journal title :
Journal of Number Theory
Record number :
715508
بازگشت