Title of article :
On the p-adic Riemann hypothesis for the zeta function of divisors
Author/Authors :
Daqing Wan، نويسنده , , C. Douglas Haessig، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
18
From page :
335
To page :
352
Abstract :
In this paper, we continue the investigation of the zeta function of divisors, as introduced by the first author in Wan (in: D. Jungnickel, H. Niederreiter (Eds.), Finite Fields and Applications, Springer, Berlin, 2001, pp. 437–461; Manuscripta Math. 74 (1992) 413), for a projective variety over a finite field. Assuming that the set of effective divisors in the divisor class group forms a finitely generated monoid, then there are four conjectures about this zeta function: p-adic meromorphic continuation, rank and pole relation, p-adic Riemann hypothesis, and simplicity of zeros and poles. This paper proves all four conjectures when the Chow the group of divisors is of rank one. Also, an example with higher rank is provided where all four conjectures hold.
Keywords :
P-adic Riemann hypothesis , Riemann-Roch problem , Newton polygon , Zeta function of divisors , Zeta function of algebraic cycles , Effective cone
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715549
Link To Document :
بازگشت