Title of article :
Adams theorem on Bernoulli numbers revisited
Author/Authors :
R. Thangadurai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
9
From page :
169
To page :
177
Abstract :
If we denote Bn to be nth Bernoulli number, then the classical result of Adams (J. Reine Angew. Math. 85 (1878) 269) says that pℓn and (p−1) n, then pℓBn where p is any odd prime p>3. We conjecture that if (p−1) n, pℓn and pℓ+1 n for any odd prime p>3, then the exact power of p dividing Bn is either ℓ or ℓ+1. The main purpose of this article is to prove that this conjecture is equivalent to two other unproven hypotheses involving Bernoulli numbers and to provide a positive answer to this conjecture for infinitely many n.
Keywords :
Bernoulli numbers , Class number of cyclotomic fields
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715587
Link To Document :
بازگشت