Title of article :
Galois cohomology in degree 3 of function fields of curves over number fields
Author/Authors :
V. Suresh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
15
From page :
80
To page :
94
Abstract :
Let k be a field of characteristic not equal to 2. For n≥1, let Hn(k,Z/2) denote the nth Galois Cohomology group. The classical Tateʹs lemma asserts that if k is a number field then given finitely many elements α1, ,αn H2(k,Z/2), there exist a,b1, ,bn k* such that αi=(a) (bi), where for any λ k*, (λ) denotes the image of k* in H1(k,Z/2). In this paper we prove a higher dimensional analogue of the Tateʹs lemma.
Keywords :
Galois cohomology , Number fields , Function fields of curves
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715602
Link To Document :
بازگشت