Title of article :
The Tate conjecture for powers of ordinary cubic fourfolds over finite fields
Author/Authors :
Yuri G. Zarhin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
44
To page :
59
Abstract :
Recently, Levin proved the Tate conjecture for ordinary cubic fourfolds over finite fields. In this paper, we prove the Tate conjecture for self-products of ordinary cubic fourfolds. Our proof is based on properties of so-called polynomials of K3-type introduced by the author about 12 years ago.
Keywords :
Cubic fourfolds , finite fields , Algebraic cycles , K3 surfaces
Journal title :
Journal of Number Theory
Serial Year :
2004
Journal title :
Journal of Number Theory
Record number :
715625
Link To Document :
بازگشت