Title of article :
Unités semi-locales modulo sommes de Gauss Original Research Article
Author/Authors :
Tatiana Beliaeva، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
For an odd prime number p and an abelian number field k, let k∞/k be the cyclotomic image-extension. Let X∞ be the projective limit of the p-parts of the ideal class groups of each intermediate field of k∞/k. It is conjectured (Greenbergʹs Conjecture) that X∞ is finite when k is totally real. In this paper we give an interpretation of the characteristic polynomial of X∞ in terms of certain Gauss sums. We also give analogous results at finite level. Our results generalize those obtained by Ichimura (J. Number Theory 68 (1998) 36) and Hachimori (Manuscripta Math. 95 (1998) 377) in the semi-simple case.
Keywords :
Gauss sums , Greenberg conjecture , Semi-local units , Iwasawa theory
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory