Title of article :
Hyperelliptic jacobians with real multiplication Original Research Article
Author/Authors :
Arsen Elkin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
34
From page :
53
To page :
86
Abstract :
Let K be a field of characteristic p≠2, and let f(x) be a sextic polynomial irreducible over K with no repeated roots, whose Galois group is isomorphic to image. If the jacobian J(C) of the hyperelliptic curve C:y2=f(x) admits real multiplication over the ground field from an order of a real quadratic field D, then either its endomorphism algebra is isomorphic to D, or p>0 and J(C) is a supersingular abelian variety. The supersingular outcome cannot occur when p splits in D.
Keywords :
Jacobian varieties , Supersingular , Real multiplication , Hyperelliptic curves , algebraic geometry
Journal title :
Journal of Number Theory
Serial Year :
2006
Journal title :
Journal of Number Theory
Record number :
715800
Link To Document :
بازگشت