Title of article :
On a family of relative quartic Thue inequalities Original Research Article
Author/Authors :
Volker Ziegler، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
23
From page :
303
To page :
325
Abstract :
We consider the relative Thue inequalitiesX4−t2X2Y2+s2Y4less-than-or-equals, slantt2−s2−2, where the parameters s and t and the solutions X and Y are integers in the same imaginary quadratic number field and t is sufficiently large with respect to s. Furthermore we study the specialization to s=1:X4−t2X2Y2+Y4less-than-or-equals, slantt2−3. We find all solutions to these Thue inequalities for image. Moreover we solve the relative Thue equationsX4−t2X2Y2+Y4=μ for image, where the parameter t, the root of unity μ and the solutions X and Y are integers in the same imaginary quadratic number field. We solve these Thue inequalities respectively equations by using the method of Thue–Siegel.
Keywords :
Relative Thue inequalities , Padé approximations , Relative Thue equations , Diophantine equations
Journal title :
Journal of Number Theory
Serial Year :
2006
Journal title :
Journal of Number Theory
Record number :
715878
Link To Document :
بازگشت