Title of article :
Arithmetical properties of linear recurrent sequences Original Research Article
Author/Authors :
Arturas Dubickas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
9
From page :
142
To page :
150
Abstract :
Let image be a polynomial with positive leading coefficient, and let α>1 be an algebraic number. For r=degF>0, assuming that at least one coefficient of F lies outside the field image if α is a Pisot number, we prove that the difference between the largest and the smallest limit points of the sequence of fractional parts {F(n)αn}n=1,2,3,… is at least 1/ℓ(Pr+1), where ℓ stands for the so-called reduced length of a polynomial.
Keywords :
Algebraic numbers , Pisot numbers , Distribution modulo 1
Journal title :
Journal of Number Theory
Serial Year :
2007
Journal title :
Journal of Number Theory
Record number :
715909
Link To Document :
بازگشت