Abstract :
We extend the results of uniform distribution modulo 1 given in [B. Rittaud, Équidistribution presque partout modulo 1 de suites oscillantes perturbées, Bull. Soc. Math. France 128 (2000) 451–471; B. Rittaud, Équidistribution presque partout modulo 1 de suites oscillantes perturbées, II: Cas Liouvillien unidimensionnel, Colloq. Math. 96 (1) (2003) 55–73], which deal with sequences of the form image, where (hn)n, image and image are polynomially increasing sequences, (εn)n a bounded sequence, image essentially a C3-function image-periodic, Θ an element of image and t a real number. We remove the Diophantine hypothesis on Θ needed in [the first of above mentioned articles], and add a technical hypothesis on hn. We apply this result to the convergence of diagonal averages for d×d matrices.