Title of article :
ABC implies the radicalized Vojta height inequality for curves Original Research Article
Author/Authors :
Machiel Van Frankenhuijsen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
9
From page :
292
To page :
300
Abstract :
The truncated or radicalized counting function of a meromorphic function image counts the number of times that f takes a value a, but without multiplicity. By analogy, one also defines this function for numbers. In this sequel to [M. van Frankenhuijsen, The ABC conjecture implies Vojtaʹs height inequality for curves, J. Number Theory 95 (2002) 289–302], we prove the radicalized version of Vojtaʹs height inequality, using the ABC conjecture. We explain the connection with a conjecture of Serge Lang about the different error terms associated with Vojtaʹs height inequality and with the radicalized Vojta height inequality.
Keywords :
Diophantineapproximation , Mordell’s conjecture , Roth’s theorem , Effective Mordell , Radicalized Vojta height inequality , Type of an algebraic number , the error term in the abc conjecture , abc conjecture
Journal title :
Journal of Number Theory
Serial Year :
2007
Journal title :
Journal of Number Theory
Record number :
716062
Link To Document :
بازگشت