Title of article :
Hecke–Siegelʹs pull-back formula for the Epstein zeta function with a harmonic polynomial Original Research Article
Author/Authors :
Kazuki Hiroe، نويسنده , , Takayuki Oda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
23
From page :
835
To page :
857
Abstract :
In this paper, we discuss the generalization of the Heckeʹs integration formula for the Epstein zeta functions. We treat the Epstein zeta function as an Eisenstein series come from a degenerate principal series. For the Epstein zeta function of degree two, Siegel considered the Heckeʹs formula as the constant term of a certain Fourier expansion of the Epstein zeta function and obtained the other Fourier coefficients as the Dedekind zeta functions with Grössencharacters of a real quadratic field. We generalize this Siegelʹs Fourier expansion to more general Eisenstein series with harmonic polynomials. Then we obtain the Dedekind zeta functions with Grössencharacters for arbitrary number fields.
Journal title :
Journal of Number Theory
Serial Year :
2008
Journal title :
Journal of Number Theory
Record number :
716111
Link To Document :
بازگشت