Abstract :
Cet article comporte deux parties indépendantes, mais complémentaires. La première prouve lʹannulation du groupe de Chow des classes de zéro-cycles de degré zéro modulo équivalence rationnelle pour une hypersurface cubique de dimension greater-or-equal, slanted10 sur un corps p-adique ou sur un corps C2 (et, en fait, la R-trivialité dʹune telle hypersurface). Ceci se fait sans hypothèse de bonne réduction (ni même de lissité) sur lʹhypersurface. La seconde partie va dans la direction opposée et donne un exemple explicite dʹhypersurface cubique lisse de dimension 3 (nécessairement de mauvaise réduction) sur un corps tel que image (ou image) dont le groupe de Chow des classes de zéro-cycles de degré zéro modulo équivalence rationnelle nʹest pas nul.