Title of article :
K. Saitoʹs Conjecture for nonnegative eta products and analogous results for other infinite products Original Research Article
Author/Authors :
Alexander Berkovich، نويسنده , , Frank G. Garvan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We prove that the Fourier coefficients of a certain general eta product considered by K. Saito are nonnegative. The proof is elementary and depends on a multidimensional theta function identity. The z=1 case is an identity for the generating function for p-cores due to Klyachko [A.A. Klyachko, Modular forms and representations of symmetric groups, J. Soviet Math. 26 (1984) 1879–1887] and Garvan, Kim and Stanton [F. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990) 1–17]. A number of other infinite products are shown to have nonnegative coefficients. In the process a new generalization of the quintuple product identity is derived.
Keywords :
Dedekind’s eta function , p-cores , K. Saito’s Conjecture , Multidimensional theta function , Quintuple productidentity , Infinite products with nonnegative coefficients
Journal title :
Journal of Number Theory
Journal title :
Journal of Number Theory