Title of article :
Iharaʹs lemma for imaginary quadratic fields Original Research Article
Author/Authors :
Krzysztof Klosin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
2251
To page :
2262
Abstract :
An analogue over imaginary quadratic fields of a result in algebraic number theory known as Iharaʹs lemma is established. More precisely, we show that for a prime ideal image of the ring of integers of an imaginary quadratic field F, the kernel of the sum of the two standard image-degeneracy maps between the cuspidal sheaf cohomology image is Eisenstein. Here Y0 and Y1 are analogues over F of the modular curves Y0(N) and Y0(Np), respectively. To prove our theorem we use the method of modular symbols and the congruence subgroup property for the group SL2(Z[1/p]) which is due to Mennicke [J. Mennicke, On Iharaʹs modular group, Invent. Math. 4 (1967) 202–228] and Serre [J.-P. Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970) 489–527].
Keywords :
group cohomology , Modular symbols , Modular forms over imaginary quadratic fields , Hecke operators
Journal title :
Journal of Number Theory
Serial Year :
2008
Journal title :
Journal of Number Theory
Record number :
716196
Link To Document :
بازگشت