• Title of article

    Fractal analysis for sets of non-differentiability of Minkowskiʹs question mark function Original Research Article

  • Author/Authors

    Marc Kesseb?hmer، نويسنده , , Bernd O. Stratmann، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    24
  • From page
    2663
  • To page
    2686
  • Abstract
    In this paper we study various fractal geometric aspects of the Minkowski question mark function Q. We show that the unit interval can be written as the union of the three sets image, image, and image. The main result is that the Hausdorff dimensions of these sets are related in the following way:image Here, image refers to the level set of the Stern–Brocot multifractal decomposition at the topological entropy htop=log2 of the Farey map F, and dimH(νF) denotes the Hausdorff dimension of the measure of maximal entropy of the dynamical system associated with F. The proofs rely partially on the multifractal formalism for Stern–Brocot intervals and give non-trivial applications of this formalism.
  • Keywords
    Singular functions , Stern–Brocot spectrum , Minkowski question mark function , Farey map
  • Journal title
    Journal of Number Theory
  • Serial Year
    2008
  • Journal title
    Journal of Number Theory
  • Record number

    716223