Title of article :
Optimal embeddings in quaternion algebras Original Research Article
Author/Authors :
John C. Maclachlan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
2852
To page :
2860
Abstract :
Let A be a quaternion algebra over a number field k and assume that A satisfies the Eichler condition so that some infinite place of k is unramified in A. Let L be a quadratic extension of k which embeds in A. Let Rk denote the ring of integers of k and let B be an Rk-order in L. Suppose that image is an Eichler order of A of square-free level S. In this paper, we determine when there exists an embedding σ:L→A over k which gives an optimal embedding of B into image in the sense that image. This generalises previous work of Eichler [M. Eichler, Zur Zahlentheorie der Quaternionenalgebren, J. Reine Angew. Math. 195 (1955) 127–155] and Chinburg and Friedman [T. Chinburg, E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. 60 (1999) 33–44].
Keywords :
Quaternion algebra , Order , Maximal order , Eichler order
Journal title :
Journal of Number Theory
Serial Year :
2008
Journal title :
Journal of Number Theory
Record number :
716235
Link To Document :
بازگشت