Title of article :
Analysing longitudinal count data with overdispersion
Author/Authors :
Sutradhar، Brajendra نويسنده , , Jowaheer، Vandna نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-388
From page :
389
To page :
0
Abstract :
In many biomedical studies, longitudinal count data comprise repeated responses and a set of multidimensional covariates for a large number of individuals.When the response variable in such models is subject to overdispersion, the overdispersion parameter influences the marginal variance. In such cases, the overdispersion parameter plays a significant role in efficient estimation of the regression parameters. This raises the need for joint estimation of the regression parameters and the overdispersion parameter, the longitudinal correlations being nuisance parameters. In this paper, we develop a generalised estimating equations approach based on a general autocorrelation structure for the repeated overdispersed data. The asymptotic properties of the estimators of the main parameters are discussed, and the estimation methodology is illustrated by analysing data on epileptic seizure counts.
Keywords :
Batch importance sampling , importance sampling , Markov chain Monte Carlo , Metropolis–Hastings , Mixture model , Generalised linear model , Parallel processing , Particle filter
Journal title :
Biometrika
Serial Year :
2002
Journal title :
Biometrika
Record number :
71811
Link To Document :
بازگشت