Title of article :
Host Range of Mycoleptodiscus terrestris, a Microbial Herbicide Candidate for Eurasian Watermilfoil, Myriophyllum spicatum
Author/Authors :
Verma U.، نويسنده , , Charudattan R.، نويسنده ,
Abstract :
A native strain of the fungal plant pathogen Mycoleptodiscus terrestris is capable of causing under experimental conditions necrotic shoot lesions and a generalized decline and disintegration of Eurasian watermilfoil (Myriophyllum spicatum), an exotic submerged aquatic weed in North America. The potential of this fungus to cause disease on nontarget plants was evaluated on 33 species and cultivars in 11 families. The nontarget selection, intended as a Tier I group, was biased toward probable suscepts consisting of submerged, floating, and emergent aquatic species and terrestrial crop plants. The plants were exposed to the fungal mycelium formulated in alginate beads. Pathogenicity rather than phytotoxicity was the primary mode of attack by the fungus. Of the 16 nontarget aquatic species tested, the fungus was pathogenic to Hydrilla verticillata (hydrilla), Myriophyllum aquaticum (parrotfeather), and Ceratophyllum demersum (coontail), but only in hydrilla did it cause plant mortality comparable to that in Eurasian watermilfoil. The remaining 13 submerged, floating, and emergent aquatic species were unaffected. Of the 17 terrestrial species screened, none was significantly affected by the fungus in germination studies, but postemergent disease symptoms developed on seedlings of 10 species. Four of the 10, Medicago sativa (alfalfa), Lotus corniculatus (birdsfoot trefoil), Trifolium hybridum (alyce clover), and T. repens (white clover), developed disease affecting 26-50% of their tissues. Thus, this host range testing scheme, based on the concept of screening plants under the maximum hazard potential, helped to identify susceptible species. Nonetheless, it exaggerated the nontarget risk due to the small number of host species tested. Screening a taxonomically diverse and larger selection of plants as well as testing under conditions of less severe exposure to the fungal inoculum are necessary to obtain a more realistic view of the host range than presently indicated.