Title of article :
One-sided invertibility of binomial functional operators with a shift on rearrangementinvariant spaces
Author/Authors :
Alexei Yu. Karlovich، نويسنده , , Yuri I. Karlovich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-200
From page :
201
To page :
0
Abstract :
Let (gamma) be an oriented Jordan smooth curve and (alpha) a diffeomorphism of (gamma) sonto itself which has an arbitrary nonempty set of periodic points. We prove criteria for one-sided invertibility of the binomial functional operator A=aI-bW where a and b are continuous functions, I is the identity operator,W is the shift operator,Wf=f (ring operator) (alpha), on a reflexive rearrangement-invariant spaceX(gamma) with Boyd indices (alpha)X , (beta)X and Zippin indices p x,q x satisfying inequalities 0 < (alpha)x = px <= qx = (beta)x < 1.
Keywords :
Hardy space , inner function , shift operator , model , subspace , admissible majorant , Hilbert transform
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Serial Year :
2002
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Record number :
72353
Link To Document :
بازگشت