• Title of article

    Repeated eigenvectors and the numerical range of self-adjoint quadratic operator polynomials

  • Author/Authors

    Peter Lancaster، نويسنده , , Alexander S. Markus، نويسنده , , Panayiotis Psarrakos، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    -242
  • From page
    243
  • To page
    0
  • Abstract
    Let L(lambda) be a self-adjoint quadratic operator polynomial on a Hilbert space with numerical range W(L). The main concern of this paper is with properties of eigenvalues on (partial differential)W(L). The investigation requires a careful discussion of repeated eigenvectors of more general operator polynomials. It is shown that, in the self-adjoint quadratic case, non-real eigenvalues on (partial differential)W(L) are semisimple and (in a sense to be defined) they are normal. Also, for any eigenvalue at a point on (partial differential)W(L) where an external cone property is satisfied, the partial multiplicities cannot exceed two.
  • Keywords
    inner function , shift operator , model , subspace , Hilbert transform , admissible majorant , Hardy space
  • Journal title
    INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Serial Year
    2002
  • Journal title
    INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Record number

    72404