Title of article :
Repeated eigenvectors and the numerical range of self-adjoint quadratic operator polynomials
Author/Authors :
Peter Lancaster، نويسنده , , Alexander S. Markus، نويسنده , , Panayiotis Psarrakos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-242
From page :
243
To page :
0
Abstract :
Let L(lambda) be a self-adjoint quadratic operator polynomial on a Hilbert space with numerical range W(L). The main concern of this paper is with properties of eigenvalues on (partial differential)W(L). The investigation requires a careful discussion of repeated eigenvectors of more general operator polynomials. It is shown that, in the self-adjoint quadratic case, non-real eigenvalues on (partial differential)W(L) are semisimple and (in a sense to be defined) they are normal. Also, for any eigenvalue at a point on (partial differential)W(L) where an external cone property is satisfied, the partial multiplicities cannot exceed two.
Keywords :
inner function , shift operator , model , subspace , Hilbert transform , admissible majorant , Hardy space
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Serial Year :
2002
Journal title :
INTEGRAL EQUATIONS AND OPERATOR THEORY
Record number :
72404
Link To Document :
بازگشت