Title of article
Linear Maps Preserving the Closure of Numerical Range on Nest Algebras with Maximal Atomic Nest
Author/Authors
Cui، Jianlian نويسنده , , Hou، Jinchuan نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-252
From page
253
To page
0
Abstract
Let N be a maximal atomic nest on Hilbert space H Alg(N) denote the associated nest algebra. We prove that a weakly continuous and surjective linear map (phi) : Alg(N) - Alg(N) preserves the closure of numerical range if and only if there exists a unitary operator U (element of) B(H) such that phi(T) = UTU* for every T (element of) Alg(N) or (phi)(T) = UT^(tr)U* for every T (element of) Alg(N), where T^(tr) denotes the transpose of T relative to an arbitrary but fixed base of H. As applications, we get the characterizations of the numerical range or numerical radius preservers on Alg(N). The surjective linear maps on the diagonal algebras of atomic nest algebras preserving the closure of numerical range or preserving the numerical range (radius) are also characterized.
Keywords
Nest algebra , Linear preserver , Numerical range
Journal title
INTEGRAL EQUATIONS AND OPERATOR THEORY
Serial Year
2003
Journal title
INTEGRAL EQUATIONS AND OPERATOR THEORY
Record number
72443
Link To Document