• Title of article

    Linear Maps Preserving the Closure of Numerical Range on Nest Algebras with Maximal Atomic Nest

  • Author/Authors

    Cui، Jianlian نويسنده , , Hou، Jinchuan نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -252
  • From page
    253
  • To page
    0
  • Abstract
    Let N be a maximal atomic nest on Hilbert space H Alg(N) denote the associated nest algebra. We prove that a weakly continuous and surjective linear map (phi) : Alg(N) - Alg(N) preserves the closure of numerical range if and only if there exists a unitary operator U (element of) B(H) such that phi(T) = UTU* for every T (element of) Alg(N) or (phi)(T) = UT^(tr)U* for every T (element of) Alg(N), where T^(tr) denotes the transpose of T relative to an arbitrary but fixed base of H. As applications, we get the characterizations of the numerical range or numerical radius preservers on Alg(N). The surjective linear maps on the diagonal algebras of atomic nest algebras preserving the closure of numerical range or preserving the numerical range (radius) are also characterized.
  • Keywords
    Nest algebra , Linear preserver , Numerical range
  • Journal title
    INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Serial Year
    2003
  • Journal title
    INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Record number

    72443