Title of article :
Adic Topologies for the Rational Integers
Author/Authors :
Broughan، Kevin A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
A topology on Z, which gives a nice proof that the set of prime integers is infinite, is characterised and examined. It is found to be homeomorphic to Q, with a compact completion homeomorphic to the Cantor set. It has a natural place in a family of topologies on Z, which includes the p-adics, and one in which the set of rational primes P is dense. Examples from number theory are given, including the primes and squares, Fermat numbers, Fibonacci numbers and k-free numbers.
Keywords :
Fibonacci numbers , p-adic , metrizable , quasi-valuation , topological ring , completion , prime integers , Fermat numbers , inverse limit , diophantine equation
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Journal title :
CANADIAN JOURNAL OF MATHEMATICS