Title of article :
Almost-Free E-Rings of Cardinality aleph1
Author/Authors :
Gobel، Rudiger نويسنده , , Shelah، Saharon نويسنده , , Strungmann، Lutz نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-74
From page :
75
To page :
0
Abstract :
An E-ring is a unital ring R such that every endomorphism of the underlying abelian group R+ is multiplication by some ring element. The existence of almost-free E-rings of cardinality greater than 2aleph0 is undecidable in \ZFC. While they exist in Giodelʹs universe, they do not exist in other models of set theory. For a regular cardinal aleph1 N (lambda) N 2aleph0 we construct E-rings of cardinality (lambda) in \ZFC which have aleph1-free additive structure. For lambda = aleph1 we therefore obtain the existence of almost-free E-rings of cardinality aleph1 in ZFC.
Keywords :
inverse limit , diophantine equation , prime integers , Fermat numbers , Fibonacci numbers , metrizable , p-adic , completion , topological ring , quasi-valuation
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Serial Year :
2003
Journal title :
CANADIAN JOURNAL OF MATHEMATICS
Record number :
72478
Link To Document :
بازگشت