Title of article
Lie Groups of Measurable Mappings
Author/Authors
Glockner، Helge نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-968
From page
969
To page
0
Abstract
We describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space (X,(Sigma),(mu)) and (possibly infinite-dimensional) Lie group G, we construct a Lie group L^(infnity) (X,G), which is a Frechet-Lie group if G is so. We also show that the weak direct product (n-ary product)^*i(element of) I Gi of an arbitrary family (Gi)i(element of) I of Lie groups can be made a Lie group, modelled on the locally convex direct sum (ciculed plus)i(element of) I L(Gi).
Keywords
Fermat numbers , Fibonacci numbers , p-adic , completion , inverse limit , metrizable , diophantine equation , topological ring , quasi-valuation , prime integers
Journal title
CANADIAN JOURNAL OF MATHEMATICS
Serial Year
2003
Journal title
CANADIAN JOURNAL OF MATHEMATICS
Record number
72485
Link To Document