Title of article :
Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants Original Research Article
Author/Authors :
Fl?via dos Santos Coelho، نويسنده , , José Domingos Ardisson، نويسنده , , Fl?via C.C. Moura، نويسنده , , Rochel M. Lago، نويسنده , , Enver Murad، نويسنده , , José Domingos Fabris، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
90
To page :
96
Abstract :
We describe the use of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) species in aqueous medium. The composites were prepared by simple mechanical alloying of metallic iron and magnetite in different proportions, i.e. Fe(0) 25, 50, 75 and 90 wt%. While after 3 h of reaction pure Fe(0) and pure Fe3O4 showed only a low reduction efficiency of 15% and 25% Cr(VI) conversion, respectively, the composites, in particular Fe(0)(25 wt%)/Fe3O4, showed a remarkable activity with ca. 65% Cr(VI) conversion. Kinetic experiments showed a high reaction rate during the first 3 h, which subsequently decreased strongly, probably due to a pH increase from 6 to 8. Experiments with composites based on Fe(0)/α-Fe2O3, Fe(0)/γ-Fe2O3 and Fe(0)/FeOOH showed very low activities, suggesting that image in the magnetite structure plays an important role in the reaction. Scanning and high resolution electron microscopies and Mössbauer spectra (transmission and conversion electron Mössbauer spectroscopy) indicated that the mechanical alloying process promotes a strong interaction and interface between the metallic and oxide phases, with the Fe(0) particles completely covered by Fe3O4 particles. The high efficiency of the composite Fe(0)/Fe3O4 for Cr(VI) reduction is discussed in terms of a special mechanism where an electron is transferred from Fe(0) to magnetite to reduce image to image, which is active for Cr(VI) reduction.
Keywords :
Mechanical alloying , magnetite , Iron metal , Chromium Reduction
Journal title :
Chemosphere
Serial Year :
2008
Journal title :
Chemosphere
Record number :
725867
Link To Document :
بازگشت