Title of article :
Localization transition of d-friendly walkers
Author/Authors :
Tanemura، Hideki نويسنده , , Yoshida، Nobuo نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-592
From page :
593
To page :
0
Abstract :
Subordination of a killed Brownian motion in a bounded domain D²Ad via an !/2-stable subordinator gives a process Zt whose infinitesimal generator is m(m(|D)!/2, the fractional power of the negative Dirichlet Laplacian. In this paper we study the properties of the process Zt in a Lipschitz domain D by comparing the process with the rotationally invariant !-stable process killed upon exiting D. We show that these processes have comparable killing measures, prove the intrinsic ultracontractivity of the generator of Zt, prove the intrinsic ultracontractivity of the semigroup of Zt, and, in the case when D is a bounded C1,1 domain, obtain bounds on the Green function and the jumping kernel of Zt.
Keywords :
Random walks , Lattice animals , Phase transitions , random walks , Polymers , Random surfaces
Journal title :
PROBABILITY THEORY AND RELATED FIELDS
Serial Year :
2003
Journal title :
PROBABILITY THEORY AND RELATED FIELDS
Record number :
73121
Link To Document :
بازگشت