Title of article :
Affine equivariant multivariate rank methods
Author/Authors :
Visuri، S. نويسنده , , Ollila، E. نويسنده , , Koivunen، V. نويسنده , , M?tt?nen، J. نويسنده , , Oja، H. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The classical multivariate statistical methods (MANOVA, principal component analysis, multivariate multiple regression, canonical correlation, factor analysis, etc.) assume that the data come from a multivariate normal distribution and the derivations are based on the sample covariance matrix. The conventional sample covariance matrix and consequently the standard multivariate techniques based on it are, however, highly sensitive to outlying observations. In the paper a new, more robust and highly efficient, approach based on an affine equivariant rank covariance matrix is proposed and outlined. Affine equivariant multivariate rank concept is based on the multivariate Oja (Statist. Probab. Lett. 1 (1983) 327) median.
Keywords :
Growth curve model , Likelihood ratio test , Multivariate ANOVA , Maximum likelihood estimator , Parsimonious modeling , Reduced-rank regression
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference