Title of article :
Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor
Author/Authors :
Jinwook Chung، نويسنده , , Xiaohao Li، نويسنده , , Bruce E. Rittmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Arsenate (As(V)) is a carcinogen and a significant problem in groundwater in many parts of the world. Since As(III) is generally more mobile and more toxic than As(V), the reduction of As(V) to As(III) is not a conventional treatment goal. However, reducing As(V) to As(III) may still be a means for decontamination, because As(III) can be removed from solution by precipitation or complexation with sulfide or by adsorption to Fe(II)-based solids. A promising approach for reducing oxidized contaminants is the H2-based membrane biofilm reactor (MBfR). In the case of arsenate, the MBfR allows bio-reduction of As(V) to As(III) and sulfate to sulfide, thereby giving the potential for As removal, such as by precipitation of As2S3(s) or formation of Fe(II)-based solids. When As(V) was added to a denitrifying MBfR, As(V) was reduced immediately to As(III). Decreasing the influent sulfate loading increased As(V) reduction for a fixed H2 pressure. A series of short-term experiments elaborated on how As(V) loading, nitrate and sulfate loadings, and H2 pressure controlled As(V) reduction. Lower nitrate loading and increased As(V) loading increased the extent of As(V) reduction, but increased H2 pressure did not increase As(V) reduction. As(V) reduction was sensitive to sulfate loading, with a maximum As(V)-removal percentage and flux with no addition of sulfate. As(III) could be precipitated with sulfide or adsorbed to Fe(II) solids, which was verified by scanning electron microscopy and energy dispersive X-ray analysis.
Keywords :
Arsenic , hydrogen , Membrane biofilm reactor , bio-reduction , sulfate reduction
Journal title :
Chemosphere
Journal title :
Chemosphere