Abstract :
Various sources for hydrothermal CH4 have been proposed over the years. While C isotope studies have narrowed the possibilities, enough higher hydrocarbon gas data now exist both to supplement the isotopic data and to permit additional deductions regarding origins. Comparison of typical C1–C6 data for gases of various origins (from sedimentary and crystalline rocks, and hydrothermal systems) reveals certain characteristics. Apart from isotopic differences, hydrothermal hydrocarbons differ from sedimentary hydrocarbons mainly in possessing tendencies towards a relative excess of CH4, higher normal/iso ratios for butane and pentane, and relatively high amounts of C6 gases. Despite these differences, consideration of the evidence indicates that hydrothermal hydrocarbon gases in most cases originate like sedimentary basin gases by thermal degradation of organic matter in the relatively shallow subsurface. The principal characteristic of these hydrothermal gases, “excess” CH4, appears to have a geothermometric function. The following empirical relationship has been derived: t°C=57.8 log(CH4/C2H6)+96.8, which fits moderately well a range of geothermal fields worldwide. This gas geothermometer may be particularly applicable during geothermal exploration in areas where there is little direct knowledge of subsurface conditions.