Author/Authors :
S. Stroes-Gascoyne، نويسنده , , C. J. Hamon، نويسنده , , P. Vilks، نويسنده , , P. Gierszewski، نويسنده ,
Abstract :
Many countries are considering options for long-term management of nuclear waste. One common aspect among deep geological disposal options in granitic host rock is the use of clay-based buffer materials to limit radionuclide migration in case of container failure. The isothermal test (ITT) involved placing not, vert, similar2.4 m3 of clay-based buffer in a borehole at the 240 m level of AECLʹs Underground Research Laboratory to study the response of buffer to resaturation by groundwater over a 6.5-year period. Results are reported here on measurements taken at the end of the test for microbial, redox and organic characterization of the buffer. Results from enumerations and biomass determinations suggested that the viable population of cells in the buffer was several orders of magnitude larger than could be cultured. It is postulated that, due to the constrictive and nutrient-poor buffer environment, viable and active cells became stressed during burial and lost activity and culturability but not viability. Culturable microbial populations at interfaces in the ITT were about an order of magnitude larger than in comparable bulk buffer samples, suggesting that interfaces may be preferred sites for microbial activity and transport. The presence of culturable SO4-reducing bacteria and an increase in solid sulphide concentrations in the buffer suggested SO4 reduction, which appeared to be very variable locally. Only about 0.02–0.5% of SO4 was converted to sulphide, suggesting that SO4 reduction was not (yet) a dominant process. No methanogens could be enumerated from the ITT, and phospholipid fatty acid (PLFA) profiles did not suggest their presence. Gas analysis of samples recovered from the ITT suggested some reduction in O2 near the top of the experiment, but deeper samples did not show a significant decrease in O2 and had only a small increase in CH4 and H2 levels. This suggested that microbial processes were depressed in the buffer but may have been more active near the concrete/buffer interface. The suggestion of low microbial activity in the buffer was corroborated by the results from the PLFA analysis, which indicated low biomass turnover rates and starvation biomarkers. The combination of enumerations, PLFA and gas analysis results suggested that no significant evolution towards reducing conditions occurred during the duration of the ITT. Fulvic acids made up the largest fraction of water-leachable humic substances but accounted for only about 2% of the total C inventory of the buffer material. The complexing capacity of these humic substances, based on carboxylic functional groups, ranged from 24 to 32 meq/g dissolved organic C. This may provide buffer porewater with considerable complexing capacity for radionuclides.