Author/Authors :
Ross A. Sutherland، نويسنده , , Filip M. G. Tack، نويسنده , , Alan D. Ziegler، نويسنده , , Joseph O. Bussen، نويسنده ,
Abstract :
Nine partial decomposition procedures and a total digestion treatment were applied to road-deposited sediments. The objective was to define a parsimonious, time-efficient decomposition procedure that (1) has limited impact on the alumnio-silicate matrix and/or refractory-associated fractions, (2) has metal recoveries independent of CaCO3 content, and (3) produces high anthropogenic signals for known contaminants (e.g., Cu, Pb and Zn). The 9 digestions varied from weak single reagents (0.11 M acetic acid) to strong multi-step procedures (BCR 3-step plus aqua regia). Eight metals were examined: Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn. Cold (room temperature) 0.5 M HCl shaken over a 1-h period with a solid-to-solution ratio of 1 g:20 ml, was judged superior based on the defined criteria. This simple, rapid treatment had limited impact on the residual matrix (mean and 95% confidence interval for Al recovery was 6±1%); recoveries of all elements examined were independent of CaCO3 content; the treatment produced high mean extraction efficiencies for Cu (58±9%), Pb (84±5%), and Zn (73±7%), and produced high anthropogenic signals. Thus, dilute HCl can be widely recommended as an optimal partial decomposition procedure for assessing non-residual fractions of complex solid media.