Author/Authors :
Alexandra Courtin-Nomade، نويسنده , , Cécile Grosbois، نويسنده , , Hubert Bril، نويسنده , , Christophe Roussel، نويسنده ,
Abstract :
Potential contamination of rivers by trace elements can be controlled, among others, by the precipitation of oxyhydroxides. The streambed of the studied area, located in “La Châtaigneraie” district (Lot River Basin, France), is characterised by iron-rich ochreous deposits, acidic pH (2.7–4.8) and SO4–Mg waters. Beyond the acid mine drainage, the presence of As both in the dissolved fraction and in the deposits is also a problem. Upstream, at the gallery outlet, As concentrations are high (Asmax = 2.6 μmol/l and up to 5 wt% locally, respectively, in the dissolved and in the solid fractions). Downstream, As concentrations decrease below 0.1 μmol/l in the dissolved fraction and to 1327 mg/kg in the solid fraction. This natural attenuation is related to the As retention within ochreous precipitates (amorphous to poorly crystalline Fe oxyhydroxides, schwertmannite and goethite), which have great affinities for this metalloid. Upstream, schwertmannite is dominant while downstream, goethite becomes the main mineral. The transformation of schwertmannite into goethite is observed in the upstream deposits as schwertmannite is unstable relative to goethite. Furthermore, thermodynamic calculations indicate that the downstream goethite is not able to precipitate in situ according to the water chemistry. Goethite mainly results from the transformation of schwertmannite and its solid transport downstream.